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To solve the problem of calibrating the polarimeter module, we design a vector projection (VP) method
which is based on the theorem of vector projection and the principle of calibration. The calibration matrix
can be calculated by VP method with the given data. The experimental result shows that, in comparison
with the common iterative algorithm, VP method has very high computational efficiency and accuracy.
The measured error of the degree of polarization (DOP) is less than 3%.
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Measuring the state of polarization (SOP) of light sig-
nal in fiber is one of the important issues in optical fiber
communication system, in which we can get the degree of
polarization (DOP) of the signal in fiber links to compen-
sate PMD in the fiber, or get the SOP in the polarization
stabilizers[1−7], etc. In generally, a polarimeter includes
optical part and electrical driver part (the four paths lin-
ear amplification, high-speed analog to digital converter,
etc.). The outputs of the polarimeter are four voltages.
In order to get Stokes vectors, a transformed matrix is
needed. While for different input wavelengths, the trans-
formed matrix has a little difference. So calibration of
transformed matrix is an important but a complicated
task. A fast and reliable calibration method should be
established.

In this letter, we proposed a new method to calibrate
the transformed matrix by using the data getting from a
reference polarimeter, such as N7788BD (Angilent Tech-
nologies). This method is based on the vector projection
algorithm.

In Fig. 1, we show the schematic of a polarimeter. The
outputs of the polarimeter are four voltages, denoted by
V1, V2, V3, V4. While S0, S1, S2, S3 are the parameters
we need. Assume the relation between them is linear,
then, we have
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Fig. 1. Schematic of a polarimeter.

The matrix form of Eq. 1 (1) is

S = MV, (2)

where S = (S0, S1, S2, S3)
T is called Stocks vector, V =

(V1, V2, V3, V4)
T

is called voltage vector, which is ob-
tained by detectors and
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is the transformed matrix. In this letter, our main task
is to calibrate the transformed matrix, simplified as cal-
ibration matrix.

By a series of experiments, we can obtain a series
of voltage vectors which are denoted by Vi = (V i
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4 )T, i = 1, · · · , n, and let V = [V1,V2, · · · ,Vn].
Let S = [S1,S2, · · · ,Sn] and the reference Stocks vec-
tors obtained from the reference polarimeter which be

denoted as S∗

i
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n
]. By these notations, Eq. (2)

can be rewritten into a matrix form

S = MV. (4)

Our purpose is to determine the calibration matrix M ,
so that S is as close as possible to the reference Stocks
parameters S∗.

For simplicity, we use S∗ (i, :), S (i, :), M (i, :), and
V (i, :), i = 1, 2, 3, 4 to denote the row vector of S∗, S,
M , and V , then Eq. (4) can also be rewritten as
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Then, we have

S (i, :)
T

= V TM (i, :)
T

, i = 1, 2, 3, 4. (6)
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Moreover, we denote R = S∗
− S as the residual matrix

and R (i, :) as the ith row of R.

Now, our problem can be changed as to find M (i, :)T,

such that S (i, :)
T

as close as possible to S∗ (i, :)
T
, where

i = 1, 2, 3, 4. Notice that S (i, :)T is a vector in the range
of the matrix V T[9], which is a linear subspace of Rn

and S∗ (i, :)
T

is a vector in Rn, then by the idea of vec-

tor projection, the “closet” approximation to S∗ (i, :)
T

in the range of matrix V T, S (i, :)
T
, is the vector which

satisfies the condition
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T
, i = 1, 2, 3, 4, (7)

where “⊥” means that S (i, :)
T

is orthogonal to R (i, :)
T
,

or the following result holds

S (i, :)
(
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)

= 0, i = 1, 2, 3, 4. (8)

In Fig. 2, we illustrate the idea of vector projection. By
Eqs. (6) and (8), we have
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)T
= 0, i = 1, 2, 3, 4.

(9)
To let Eq. (9) holds, we take

S∗ (i, :)V T
− M (i, :)V V T = 0, i = 1, 2, 3, 4, (10)

which is a sufficient condition for Eq. (9). By Eq. (10),
under the assumption that V V T is invertible, we have

M (i, :) = S∗ (i, :)V T
(

V V T
)−1

, i = 1, 2, 3, 4. (11)

If we written Eq. (11) in matrix form, we have

M = S∗V T
(

V V T
)

−1
, (12)

and Eq. (12) gives the equation to determine the cali-
bration matrix.

One thing should be pointed out that, although Eq.
(12) need the assumption that V TV should be invert-
ible, this assumption seems not very sharp. Our exam-
ples show that this assumption can always be satisfied.

The setup of experiment to determine the calibration
matrix is shown in Fig. 3. The laser light generated
by continous wave (CW) laser source passes through an
adjustable attenuator, and input into the polarization an-
alyzer, which is used as reference polarimeter. In the ex-
periment, we set the polarization state of the polarization
analyzer as n group of polarization states which are uni-
formly distributed on the Poincaré sphere. The output
light of polarization analyzer is input to the polarimeter
module. Here, the function of attenuator is to adjust the
power of the polarimeter module input light, so that the 4
output voltages of polarimeter module are within the lin-
ear range of the amplifiers. The amplified 4 output volt-
ages of polarimeter are changed into digital voltages by
analog-to-digital converter (ADC) and are captured by
digital signal processing (DSP). All outputs of the digital
voltages are recorded in a matrix V = [V1,V2, · · · ,Vn],
where each column of V respects to one group of 4 volt-
ages for one polarization state of the light. At the same

time, the polarization analyzer provide Stocks parame-
ters of the light and the corresponding outputs are also
be recorded in a matrix S∗ = [S∗

1,S
∗

2, · · · ,S∗

n
], where

each column of S∗ represents 4 Stocks parameters of one
polarization state. By Eq. (12), we will obtain the cali-
bration matrix M .

To test the efficiency of the vector projection based
algorithm, we use an environment shown in Fig. 4 and
program the algorithm into DSP. The function of atten-
uator is the same as in Fig. 3. The adjusted light gener-
ated by CW is inputted into the polarization scrambler
(HP11896A). The scrambler is running under the speed is
about 80 rad/s. The polarized light with rapidly chang-
ing polarization state is inputted into the polarimeter
module and 4 output voltages are generated. The output
voltages are captured by DSP and changed into Stocks
parameters by Eq. (1), which is using the calibration ma-
trix obtained by Eq. (12). By these Stocks parameters,
we can calculate the DOP of the light by

fDOP =

√

S2
1 + S2

2 + S2
3

S0
. (13)

Fig. 2. Illustration of projection of vectors.

Fig. 3. Experimental setup to determine the calibration ma-
trix.

Fig. 4. Experimental setup to test the efficiency of vector
projection based algorithm.
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To the completely polarized light, we have fDOP = 1,
and fDOP = 0 represents to the unpolarized light. If
0 < fDOP < 1, the light is said to be partially polarized.
Since the input light in our experiment are completely
polarized and there are no noise introduced into the link
system, then, the output light of polarization scrambler
can also be treated as completely polarized light, and
fDOP still is 1 or close to be 1. The results of our exper-
iments are shown in Figs. 5(a) and (b).

In Fig. 5(a), we show 10 000 groups of fSOP and fDOP,

Fig. 5. (a) Experimental measured fSOP and fDOP; (b) dis-
tribution of fSOP in Poincaré sphere.

which are measured by polarimeter module and calcu-
lated by Eq. (1) with calibration matrix obtained by Eq.
(12), respectively. In Fig. 5(b), we show the distribution
of fSOP on the Poincaré sphere. The experiment shows
that, all fDOP of sample points are around 1, without
sharp oscillations and the relative error are no more
than 3%. Except very few points, all calculated Stocks
parameters, S1, S2 and S3, are in the interval (−1, 1)
and the polarization states are distributed on Poincaré
sphere. This experiment shows that the calibration ma-
trix obtained in the experiment in Fig. 4 has sufficient
accuracy and can be used in practice.

In conclusion, we design a new method to determine
the calibration matrix used by polarimeter, which is
based on the idea of vector projection. Our experiments
show that the calibration matrix obtained by the new
method has enough accuracy for practice, the relative
error of DOP value of polarization state is no more than
3%. Also, the process to obtain the calibration matrix is
very fast. After obtain all data used in Eq. (12), only a
few second are needed to find the calibration matrix.
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